Contoh Soal Nilai Mutlak
Contoh 1
Tentukanlah HP |2x – 1| = |x + 4|
Tentukanlah HP |2x – 1| = |x + 4|
Jawaban :
|2x – 1| = |x + 4|
|2x – 1| = |x + 4|
2x – 1 = x + 4 ataupun 2x – 1 = -(x + 4)
x = 5 ataupun 3x = -3
x = 5 ataupun x = -1
x = 5 ataupun 3x = -3
x = 5 ataupun x = -1
Maka, HP = (-1, 5)
Contoh 2
Tentukanlah himpunan penyelesaian |2x – 7| = 3
Tentukanlah himpunan penyelesaian |2x – 7| = 3
Jawaban :
|2x – 7| = 3 ( 2x – 7 = 3 ataupun 2x – 7 = -3)
|2x – 7| = 3 ( 2x = 10 ataupun 2x = 4)
|2x – 7| = 3 ( x = 5 ataupun x = 2)
|2x – 7| = 3 ( 2x – 7 = 3 ataupun 2x – 7 = -3)
|2x – 7| = 3 ( 2x = 10 ataupun 2x = 4)
|2x – 7| = 3 ( x = 5 ataupun x = 2)
Maka, HP = 2, 5
Contoh 3
Tentukanlah himpunan penyelesaian |4x + 2| ≥ 6
Tentukanlah himpunan penyelesaian |4x + 2| ≥ 6
Jawaban :
|4x + 2| ≥ 6 (4x + 2 ≤ -6 atau 4x + 2 ≥ 6)
|4x + 2| ≥ 6 (4x ≤ -8 atau 4x ≥ 4)
|4x + 2| ≥ 6 (x ≤ -2 atau x ≥ 1)
|4x + 2| ≥ 6 (4x + 2 ≤ -6 atau 4x + 2 ≥ 6)
|4x + 2| ≥ 6 (4x ≤ -8 atau 4x ≥ 4)
|4x + 2| ≥ 6 (x ≤ -2 atau x ≥ 1)
Maka, HP = (x ≤ -2 atau x ≥ 1)
Contoh 4
Tentukan penyelesaian |3x – 2| ≥ |2x + 7|
Tentukan penyelesaian |3x – 2| ≥ |2x + 7|
Jawaban :
|3x – 2| ≥ |2x + 7|
⇔ 3x – 2 ≤ -(2x + 7) ataupun 3x – 2 ≥ 2x + 7
⇔ 5x ≤ -5 ataupun x ≥ 9
⇔ x ≤ -1 atau x ≥ 9
|3x – 2| ≥ |2x + 7|
⇔ 3x – 2 ≤ -(2x + 7) ataupun 3x – 2 ≥ 2x + 7
⇔ 5x ≤ -5 ataupun x ≥ 9
⇔ x ≤ -1 atau x ≥ 9
Maka, HP = (x ≤ -1 atau x ≥ 9)
Contoh 5
Tentukanlah himpunan penyelesaian dari |2x – 1| < 7
Tentukanlah himpunan penyelesaian dari |2x – 1| < 7
Jawaban :
|2x – 1| < 7 (-7 < 2x – 1 < 7)
|2x – 1| < 7 (-6 < 2x < 8)
|2x – 1| < 7 (-3 < x < 4)
|2x – 1| < 7 (-7 < 2x – 1 < 7)
|2x – 1| < 7 (-6 < 2x < 8)
|2x – 1| < 7 (-3 < x < 4)
Maka, HP = (-3 < x < 4)
Sifat Pertidaksamaan nilai mutlak
Mengambil nilai mutlak dari persamaan nilai mutlak pada dasarnya cukup mudah. Dengan mengikuti dua aturan penting sudah bisa menentukan nilai mutlaknya. Pada intinya, nilainya akan positif jika fungsi dalam tanda mutlak lebih dari nol. Namun akan bernilai negatif jika fungsi dalam tanda mutlak kurang dari nol.
Dalam pertidaksamaan nilai mutlak tidak cukup dengan cara begitu. Ada pertidaksamaan aljabar yang ekuivalen dengan pertidaksamaan nilai mutlak. Ataupun bisa disebut sebagai sifat pertidaksamaan nilai mutlak. Sifat inilah yang bisa dipakai untuk menentukan himpunan penyelesaian pada soal pertidaksamaan nilai mutlak yang diberikan.
Berikut ini adalah sifat pertidaksamaan nilai mutlak yang bisa dipakai untuk menyelesaikan soal terkait pertidaksmaan nilai mutlak.
Dalam menyelesaikan pertidaksamaan nilai mutlak, selain butuh mengetahui sifat yang sudah diberikan di atas, juga diperlukan kemampuan untuk menguasai cara operasi bentuk aljabar Dan cara dasar dalam mengoperasikan bilangan dan variabel.
Demikianlah pembahasan mengenai contoh soal nilai mutlak dan sifat-sifat pertidaksamaan nilai mutlak, semoga diberi faham dan bermanfaat
Tidak ada komentar:
Posting Komentar